Role of prokaryotic Cu,Zn superoxide dismutase in pathogenesis.

نویسنده

  • A Battistoni
چکیده

Several bacterial pathogens possess sodC genes that encode periplasmic or membrane-associated Cu,Zn superoxide dismutases. Since professional phagocytes generate large amounts of reactive oxygen species to control the growth of invading micro-organisms, Cu,Zn superoxide dismutase might protect infectious bacteria from oxy-radical damage and facilitate their survival within the host. This idea has gained support from studies showing that sodC -null mutants of different bacteria are less virulent than their parental wild-type strains, and from the discovery that, despite apparent dispensability for growth under laboratory conditions, various pathogens (including several highly virulent Salmonella strains) possess multiple copies of sodC. Our studies indicate that Cu,Zn superoxide dismutase effectively protects bacteria from phagocytic killing, and that the role in infection of the redundant sodC genes may vary in distinct Salmonella enterica serovars. More unexpectedly, we have found that Cu,Zn superoxide dismutase also modulates bacterial survival within epithelial cells, where bacterial killing appears to be mediated by an NAD(P)H oxidase resembling the enzyme complex typical of phagocytes. Finally, a striking feature of Cu,Zn superoxide dismutases from bacterial pathogens is their apparent ability to exploit the structural versatility of the enzyme to modulate its function. In fact, several enzyme variants exhibit unique properties that may lead to the acquisition of novel specialized functions distinct from superoxide dismutation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prokaryotic Cu,Zn superoxide dismutases.

The Cu,ZnSODs (Cu,Zn superoxide dismutases) comprise a class of ubiquitous metalloenzymes that catalyse the dismutation of the superoxide radical anion into oxygen and hydrogen peroxide. The dismutation reaction involves two successive encounters of the superoxide anion with a catalytic copper centre hosted by the enzyme at the dead end of a narrow protein channel. Cu,ZnSOD is found in all euka...

متن کامل

Periplasmic superoxide dismutase in meningococcal pathogenicity.

Meningococcal sodC encodes periplasmic copper- and zinc-cofactored superoxide dismutase (Cu,Zn SOD) which catalyzes the conversion of the superoxide radical anion to hydrogen peroxide, preventing a sequence of reactions leading to production of toxic hydroxyl free radicals. From its periplasmic location, Cu,Zn SOD was inferred to acquire its substrate from outside the bacterial cell and was spe...

متن کامل

Oxidative stress in the brain tissue of laboratory mice with acute post insulin hypoglycemia.

Malondialdehyde (MDA), Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and selenium-dependent glutathione peroxidase (GSPHx) are currently considered to be basic markers of oxidative stress. MDA is one of the end-products of the peroxidation of membrane lipids, whereas enzymes Cu,Zn-SOD and GSHPx belong to the natural antioxidants. The role of oxygen free radicals in the pathogenesis of many diseases is...

متن کامل

Pivotal role of Cu,Zn-superoxide dismutase in endothelium-dependent hyperpolarization.

The endothelium plays an important role in maintaining vascular homeostasis by synthesizing and releasing several vasodilating factors, including prostacyclin, NO, and endothelium-derived hyperpolarizing factor (EDHF). We have recently identified that endothelium-derived H2O2 is an EDHF in mesenteric arteries of mice and humans and in porcine coronary microvessels. However, the mechanism for th...

متن کامل

Demonstration of Cu-Zn superoxide dismutase in rat liver peroxisomes. Biochemical and immunochemical evidence.

In this study, by using highly purified rat liver peroxisomes, we provide evidence from analytical cell fractionation, Western blot, and immunocytochemical analysis that Cu-Zn superoxide dismutase is present in animal peroxisomes. Treatment with ciprofibrate, a peroxisome proliferator, increased the peroxisomal superoxide dismutase activity by 3-fold with no effect on mitochondrial activity but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 31 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2003